EMERGENCY STORAGE PROJECT
San Vicente Pipeline Update
Briefing Summary

DATE: Aug. 21, 2006  TIME: 7 p.m.
EVENT: Mira Mesa Planning Group
MEETING LOCATION: Mira Mesa Library
PRESENTER(S): Andrew Oleksyn, SDCWA
STAFF RESOURCES: Rachel Kulis, Katz & Associates
Jessica Berlin, Katz & Associates

PRESENTATION SUMMARY:

Andrew Oleksyn, assistant construction administrator for the San Vicente Pipeline project, explained the San Vicente Pipeline is an 11-mile-long pipeline that will connect the Water Authority’s Second Aqueduct to San Vicente Reservoir.

The entire pipeline will be built within a tunnel and there are four construction access locations along the pipeline route. At the San Vicente Portal a hard rock tunnel boring machine was launched about a month and a half ago. It has bored about 1,200 feet so far. Once it bores about three-quarters of a mile it will then be backed out of the tunnel and brought to the West Shaft.

At the Slaughterhouse Shaft, the contractor is drilling and blasting in two directions. They’ve completed about 2,300 feet and have a total of about one mile to go.

The Central Shaft is 70 feet deep and a digger machine was launched there. The machine is currently excavating the starter tunnel and has about four and a half miles to dig.

Construction has been under way at the West Shaft, located at I-15 and Mercy Road in Mira Mesa, for about a year. Andrew showed some pictures of the West Shaft construction, including an overall site layout picture that showed Mercy Road and I-15. Andrew said that the contractor has completed the construction of the shaft, which is 36 feet in diameter and 115 feet deep. They have now started to tunnel to the east using drill and blast methods. The tunnel is about 250 feet complete so far and the drill and blasting will stop when they reach 400 feet. After the hard rock tunnel boring machine is done at the San Vicente Portal, it will be brought to the West Shaft, reassembled in the starter tunnel, and then will continue boring to the east. The tunnel boring machine is expected to arrive at the West Shaft early next year, although the exact schedule depends on how the work goes at the Portal.

Andrew said the contractor has been working 10 to 12 hour shifts six days a week at the West Shaft. Night work at this site is not allowed. Blasting occurs about every other day inside the tunnel and the advancement rate is about 18 to 20 feet per week. Andrew said that there currently isn’t as much water in the tunnel as they thought they had anticipated. There has been about 20 gallons of
water per minute. The tunnel water flows through settling tanks and is then discharged into the sewer system. Andrew said that they had planned to sprinkle the water on top of Miramar Hill, but this hasn’t been necessary due to the low water levels.

The contractor has been able to stockpile some of the material from the tunnel on site, so they only need to truck the material off site about two to three times per week. When this trucking occurs, 15 to 20 truck trips are needed, over about five hours.

During the rainy season it has been a challenge to control the sediment from running down Alemania Road (the access road to the project site) - a very steep, dirt road. To control the water flow, the contractor will install temporary pavement on the road. They'll pave about 100 feet and that is expected to take place this week.

About a month and a half ago there was an electrical problem at the site and the contractor had to run a generator. But that has now been repaired and they are back on SDG&E power.

Questions and Comments During the Presentation:

C1. There have been no complaints received regarding the project.

Q1. What is the destination of the excavated material?
A1. Hanson Aggregates, off Miramar Road.

Q2. What is the tunnel diameter?
A2. Between 11.5 and 13 feet.

Q3. The water that you said you are discharging, it’s not going into the storm drain system?
A3. No, that water is going into the sewer system.

Q4. Why isn’t it going in the storm drain system?
A4. The storm drain eventually leads to natural drainages and water courses, so discharges to the storm drain must meet stringent requirements. Several naturally occurring metals in the groundwater such as Iron and Selenium exceed the limits, which makes paying the sewer discharge fees more economical than advanced treatment to remove the metals.

Q5. If you had to disperse the water on Miramar Hill, how would you get it clean?
A5. Disbursing this water over the ground has less stringent requirements because the water eventually returns to the source in the ground. The water would still pass through settling tanks to remove solids, but the advanced metal removal process is unnecessary. These requirements are dictated by the Regional Water Quality Control Board.